Distinctive features of degenerating Purkinje cells in spinocerebellar ataxia type 31
نویسندگان
چکیده
Spinocerebellar ataxia type 31 (SCA31) is an autosomal dominant form of pure cerebellar ataxia that is caused by a disease-specific insertion containing penta-nucleotide repeats (TGGAA)n . Neuropathologically, cerebellar Purkinje cells are preferentially affected and reduced in number in SCA31, and they are often surrounded by halo-like amorphous materials. In the present study, we performed neuropathological analyses on two SCA31 brains, and discussed the serial morphological changes of Purkinje cells in SCA31.We found that bent, elongated, often folded nuclei were observed frequently in degenerating Purkinje cells with the halo-like structure. Conversely, Purkinje cells without this structure developed marked atrophy with severely slender and condensed nuclei. On the basis of these pathological findings, we propose two different processes for Purkinje cell degeneration in SCA31, namely, shrinkage of Purkinje cells with or without the halo-like amorphous materials. The former, but not the latter, was considered to be specific to SCA31. Correspondingly, fragmentation of the Golgi apparatus was observed more frequently in Purkinje cells with the halo-like structure than in those without this structure. We consider that the profound nuclear deformity and fragmentation of the Golgi apparatus are closely linked with the formation of the halo-like structure in SCA31.
منابع مشابه
Fusion of Human Fetal Mesenchymal Stem Cells with “Degenerating” Cerebellar Neurons in Spinocerebellar Ataxia Type 1 Model Mice
Mesenchymal stem cells (MSCs) migrate to damaged tissues, where they participate in tissue repair. Human fetal MSCs (hfMSCs), compared with adult MSCs, have higher proliferation rates, a greater differentiation capacity and longer telomeres with reduced senescence. Therefore, transplantation of quality controlled hfMSCs is a promising therapeutic intervention. Previous studies have shown that i...
متن کاملEarly changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3.
The relationship between cerebellar dysfunction, motor symptoms, and neuronal loss in the inherited ataxias, including the polyglutamine disease spinocerebellar ataxia type 3 (SCA3), remains poorly understood. We demonstrate that before neurodegeneration, Purkinje neurons in a mouse model of SCA3 exhibit increased intrinsic excitability resulting in depolarization block and the loss of the abil...
متن کاملSCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant inherited disorder characterized by degeneration of cerebellar Purkinje cells, spinocerebellar tracts, and selective brainstem neurons owing to the expansion of an unstable CAG trinucleotide repeat. To gain insight into the pathogenesis of the SCA1 mutation and the intergenerational stability of trinucleotide repeats in mice, we have...
متن کاملExpression of ataxin-2 in brains from normal individuals and patients with Alzheimer's disease and spinocerebellar ataxia 2.
Spinocerebellar ataxia type 2 (SCA2) is caused by expansion of a CAG trinucleotide repeat located in the coding region of the human SCA2 gene. The SCA2 gene product, ataxin-2, is a basic protein with two domains (Sm1 and Sm2) implicated in RNA splicing and protein interaction. However, the wild-type function of ataxin-2 is yet to be determined. To help clarify the function of ataxin-2, we produ...
متن کاملAminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1.
The contribution of neuronal dysfunction to neurodegeneration is studied in a mouse model of spinocerebellar ataxia type 1 (SCA1) displaying impaired motor performance ahead of loss or atrophy of cerebellar Purkinje cells. Presymptomatic SCA1 mice show a reduction in the firing rate of Purkinje cells (both in vivo and in slices) associated with a reduction in the efficiency of the main glutamat...
متن کامل